Inconsistency of Bootstrap: the Grenander Estimator

نویسندگان

  • Bodhisattva Sen
  • Moulinath Banerjee
  • Michael Woodroofe
چکیده

In this paper we investigate the (in)-consistency of different bootstrap methods for constructing confidence intervals in the class of estimators that converge at rate n 1 3 . The Grenander estimator, the nonparametric maximum likelihood estimator of an unknown nonincreasing density function f on [0,∞), is a prototypical example. We focus on this example and explore different approaches to constructing bootstrap confidence intervals for f(t0), where t0 ∈ (0,∞) is an interior point. We find that the bootstrap estimate, when generating bootstrap samples from the empirical distribution function Fn or its least concave majorant F̃n, does not have any weak limit in probability. We provide a set of sufficient conditions for the consistency of any bootstrap method in this example and show that bootstrapping from a smoothed version of F̃n leads to strongly consistent estimators. The m out of n bootstrap method is also shown to be consistent while generating samples from Fn and F̃n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrapping the Grenander estimator

Abstract: The goal of this paper is to study the bootstrap for the Grenander estimator. The first result is a proof of the inconsistency of the nonparametric bootstrap for the Grenander estimator at a given point. The second result is the development and verification of a bootstrap for the L1 confidence band for the Grenander estimator. As part of this work, kernel estimators are studied as alt...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Goodness-of-Fit Test for Monotone Functions

In this article, we develop a test for the null hypothesis that a real-valued function belongs to a given parametric set against the non-parametric alternative that it is monotone, say decreasing. The method is described in a general model that covers the monotone density model, the monotone regression and the right-censoring model with monotone hazard rate. The criterion for testing is an L p-...

متن کامل

Asymptotic Normality of the L K - Error of the Grenander Estimator

We investigate the limit behavior of the L k-distance between a decreasing density f and its nonparametric maximum likelihood es-timatorˆfn for k ≥ 1. Due to the inconsistency ofˆfn at zero, the case k = 2.5 turns out to be a kind of transition point. We extend asymp-totic normality of the L1-distance to the L k-distance for 1 ≤ k < 2.5, and obtain the analogous limiting result for a modificati...

متن کامل

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007